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a b s t r a c t

The application of an electric field on a multi-component leaky dielectric fluid system leads to an electric
stress at the fluid–fluid interface. To capture the effect of these electric stresses, we report a newmethod
to couple the electrostatics and hydrodynamics of leaky dielectric fluids within the framework of the
lattice Boltzmann method. The developed methodology relies on obtaining time invariant solution to the
equation governing the divergence of current density in the flow domain using a time marching lattice
Boltzmann equation or through a finite-difference formulation. The coupling between the low spurious
velocity hydrodynamics model and the leaky dielectric counterpart is also illustrated through the use
of three case studies involving interaction of single or multiple droplets suspended in an outer fluid
under the action of an external electric field. The results obtained from the developed methodology are
shown to be in excellent agreement with earlier published analytical and numerical results. Further, the
numerical experiments demonstrate that the developed methodology is applicable for both steady- and
time-dependent flows.

© 2018 ElsevierMasson SAS. All rights reserved.

1. Introduction

Electrohydrodynamics (EHD) deals with the study of fluid mo-
tion induced by an electric field [1]. In the presence of an electric
field, the free charge carriers present in a fluid gives rise to electric
conduction and the bound charges give rise to polarization [2].
On applying a DC electric field to a multiphase system, charges
because of polarization appears at the interface of each phase.
Also, the free charge carriers present in each fluid migrate to the
fluid–fluid interface. The accumulation of charge in the presence of
electric field leads to an electric stress at the interface [1], thereby
influencing the fluid flow. This manipulation of fluid motion using
an electric field has found applications in a variety of multiphase
flows, such as droplet breakup [3], coalescence of droplets and
solvent extraction [4], and electrospraying [5].

The EHD flows in multiphase systems depend strongly on the
conductivity and permittivity of the fluids. For example, a droplet
of perfect conducting or perfect dielectric liquid immersed in an-
other immiscible perfect insulating liquid subjected to electric field
attains a prolate shape by elongating along the direction of electric
field with no net fluid motion observed in the equilibrium state [1,
6]. In contrast, a weakly conducting drop (leaky dielectric fluid)
suspended in another immiscible leaky dielectric fluid elongates
either along or perpendicular to the direction of electric field [7].
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Such effects of permittivity and conductivity on EHD flows of mul-
tiphase fluids were first examined by Taylor [8] who recognized
that leaky dielectric fluids can transmit free charge to the fluid–
fluid interface. This free charge leads to an electric stress along both
the normal and the tangential direction to the fluid–fluid interface.
The tangential component of the electric stress drives fluid into
motion thereby generating a hydrodynamic stress at the interface.
This EHD theory proposed by Taylor [8] is referred to as the leaky
dielectric model [1].

The response of leaky dielectric fluids under the influence of
electric field can be used in many processes such as droplet for-
mation [9], breakup [3] and coalescence [10]. An efficient control
of these applications require an in-depth understanding of the
interaction of electric field with leaky dielectric fluids. Though the
EHD flows of leaky dielectric fluids have been extensively stud-
ied both experimentally and analytically [1,3,11–15], due to the
complicated electro-mechanical coupling between electric field
and the fluids, analytical studies employ various simplifying as-
sumptions. Thus, numerical simulations are required to accurately
model the EHD of leaky dielectric fluids. Based on the approach
used to define the fluid–fluid interface, numerical methods of the
EHD flows can be categorized as: (i) front tracking method [16],
(ii) level set method [17], (iii) volume of fluids [18–21] and (iv)
immersed boundary and immersed interface method [22]. How-
ever, all these interface capturing techniques are based on solving
a separate equation for tracking the fluid–fluid interface along
with the Navier–Stokes equation. The boundary element method
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is another approach to simulate EHD flows [6,23,24]. However, its
applicability is limited to inviscid and Stokes flow problems.

The lattice Boltzmannmethod (LBM) has emerged as a powerful
tool to simulate fluid flow in applications involving interfacial
dynamics [25,26]. As compared to the conventional Navier–Stokes’
solvers, some of the salient features of lattice Boltzmann method
include (i) solution of a linear partial differential equation which
is relatively easier than the non-linear Navier–Stokes equation, (ii)
no special treatment required to calculate static pressure, while in
Navier–Stokes equation static pressure is determined by solving
Poisson’s equation, and (iii) matrix inversions are not required in
lattice Boltzmann method as the governing equations are local in
nature, thus making it ideal for parallelization [26]. While lattice
Boltzmannmethod iswidely used for simulatingmulti-component
flows, its development for EHD flows has received little atten-
tion. Zhang and Kwok [27] first used lattice Boltzmann method
to study droplet deformation in the presence of an electric field
by coupling the pseudo-potential method for multiphase simula-
tions [28] and lattice Boltzmann equation for computing electric
potential [29]. EHD effects on a droplet suspended in another
immiscible fluid were also analyzed by Li et al. [30] by coupling
the pseudo-potential method [28] with the electrostatic model.
However, one of the major limitations of the pseudo-potential
method [28] is that it renders high spurious velocities at the fluid–
fluid interface [31] which can only be reduced by using higher-
order discretization. Moreover, the pseudo-potential model [28] is
not the favored option for simulating fluid flow problems where
Reynolds number is of O(1) or less [31]. Further, the applicability
of the previously developed models [27,30] was limited to two-
dimensional steady flows only.

In this paper, a low spurious current lattice Boltzmann model
for accurate numerical simulations of EHD flows in multi-
component fluids is presented. The proposed numerical frame-
work is applicable to both two and three-dimensional fluid system
which can be approximated as leaky dielectric fluids. The coupling
of the leaky dielectric model with the lattice Boltzmann method
is achieved by incorporating a body force due to the electric
field directly at the fluid–fluid interface. The proposed method is
validated with earlier reported theoretical and numerical studies
to highlight the capability of the developed model to accurately
simulate steady and unsteady EHD flows.

2. Mathematical model

The governing equations for fluid flow in the presence of an
electric field are called EHD equations, and can be expressed as

∇ · (ρu) = 0, (1)

∂ (ρu)

∂t
+ u · ∇(ρu) = −∇p + µ∇

2u + γ κnδ + ∇ · TE, (2)

where ρ, u, p and µ are the fluid density, velocity field, pressure
and dynamic viscosity, respectively. γ is the interfacial tension, κ is
the local curvature of the interface and δ is theDirac-delta function.
TE is the Maxwell stress tensor acting at the fluid–fluid interface.
The Maxwell stress arises due to the discontinuity of the electrical
properties at the fluid interface and is expressed as [32]

TE
= ε(EE −

1
2
E2I). (3)

Here, ε is the dielectric permittivity, E represents the electric field
and I is the identity tensor. In Eq. (3), the electrostriction force
term has been neglected. The governing equations required for the
calculation of TE are discussed as follows.

The electric field is related to the conductivity σ and free charge
density ρf by the charge conservation equation [33]

∂ρf

∂t
+ ∇ · (ρf u + σE) = 0, (4)

where ρf = ∇ · (εE). Since charge relaxation time scale in electro-
statics is assumed to be very small and charges are considered to
be static [34], Eq. (4) becomes

∇ · (σE) = 0, (5)

where

∇ × E = 0. (6)

The Eqs. (1)–(3) and (5) are solved simultaneously to compute
the flowof leaky dielectric fluids. The numericalmethoddeveloped
to perform these simulations is discussed below.

2.1. Hydrodynamics of multi-component fluids

In this study, lattice Boltzmann method is used to simulate
the hydrodynamics of fluids. The fundamental idea of the lattice
Boltzmann method is to develop simplified kinetic models for
macroscopic fluid flows, which includes the essential physics of
mesoscopic processes. As themacroscopic dynamics of a fluid is the
result of collective behavior of microscopic particles in the fluid,
the macroscopic averaged properties obtained from such kinetic
models obey the desired macroscopic equations [26].

The discretized form of the lattice Boltzmann equation along
the direction ‘‘i’’ is given by

fi(x + eiδt, t + δt) = fi(x, t) + Ωi(fi(x, t)) + Φi, i = 0, 1, . . . ,N,

(7)

where

Ωi(fi(x, t)) = −
fi(x, t) − f eqi (x, t)

τ
. (8)

Here, fi is the particle distribution function, ei is the microscopic
velocity, Φi is the source term and N is the number of links at each
lattice node. In Eq. (8), Ωi is the linearized form of the collision
operatorwith the single relaxation time, f eqi is the local equilibrium
distribution function and τ is the dimensionless relaxation time.
The local equilibrium distribution function f eqi along the direction
‘‘i’’ is expressed as

f eqi = wiρ

[
1 +

ei · u
c2s

+
(ei · u)2

2c4s
−

u · u
2c2s

]
, (9)

where ρ is the macroscopic density, u is the macroscopic velocity
vector, cs is the speed of sound in lattice units and wi is the
weight function. The D2Q9 and D3Q19 lattice model were em-
ployed for two-dimensional and three-dimensional simulations.
For the D2Q9 model, the lattice velocity vectors are given as

eα =

{ (0, 0),
(±1, 0), (0, ±1)

(±1, ±1), (±1, ±1)

α = 0
α = 1, 2, 3, 4
α = 5, 6, 7, 8,

(10)

and the weight functions are

wi =

{ 4/9
1/9
1/36

for
for
for

i = 0
i = 1, . . . , 4
i = 5, . . . , 8.

(11)

The lattice velocity vectors and the weight function for the D3Q19
lattice model are given as

eα =

{ (0, 0, 0),
(±1, 0, 0), (0, ±1, 0), (0, 0, ±1)

(±1, ±1, 0), (±1, 0, ±1), (0, ±1, ±1)

α = 0
α = 1, . . . , 6
α = 7, . . . , 18,
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Fig. 1. Illustration of a diffused interface multi-component lattice Boltzmann
method. The two fluids are represented by subscripts ‘R’ and ‘B’ and are separated
by a diffused interface. The color distribution function, C , is defined based on the
density of fluids. The value of C is fixed for each fluid and varies from −1 to 1 along
the diffused interface.

(12)

and

wi =

{ 1/3
1/18
1/36

for
for
for

i = 0
i = 1, . . . , 6
i = 7, . . . , 18,

(13)

respectively.
Knowing the particle distribution fi, the macroscopic density

and momentum in the lattice Boltzmann method can be obtained
as

ρ =

∑
i

fi =

∑
i

f eqi , ρu =

∑
i

fiei =

∑
i

f eqi ei. (14)

Chen and Doolen [26] have shown that using the Chapman–
Enskog expansion together with Eq. (14), the differential form of
the single relaxation time Boltzmann equation can be reduced to
the Navier–Stokes equation in the low frequency and long wave-
length limit. The pressure and kinematic viscosity can then be
written as p = c2s ρ and ν = (τ − 0.5)c2s δt .

Eq. (7) can be conveniently solved using a two step algorithm
consisting of (i) collision, and (ii) streaming steps. During the
collision step, the distribution function acquires the direction to
stream to the neighboring node.

f ti (x, t + δt) = fi(x, t) −
1
τ
(fi(x, t) − f eqi (x, t)) + Φi(x, t), (15)

where f ti denotes the temporary distribution function. In the
streaming step, the temporary distribution function f ti at the cur-
rent lattice node overrides the value of the distribution function of
the surrounding nodes

fi(x + eiδt, t + δt) = f ti (x, t + δt). (16)

On determining the distribution function the macroscopic proper-
ties of the fluid can be calculated using Eq. (14).

2.2. Coupled multicomponent-leaky dielectric model

To study electrohydrodynamics of multi-component leaky di-
electric fluids with equal densities, we have developed a frame-
work by which the electrodynamic and hydrodynamic models
can be coupled within the lattice Boltzmann method. The hy-
drodynamic model of the developed framework involves the im-
plementation of the color-fluid model of Gunstensen et al. [35]

and incorporates the improvements made by Lishchuk et al. [36].
This modification in the original model (Gunstensen et al. [35])
facilitates the computation of flows where Reynolds number is of
the O(1) or less [31]. The hydrodynamic model has been applied
to analyze the physics of rheology in emulsions [37], formation
of droplets in cross-flow microfluidic device [38] and model the
buoyant rise of single and multiple bubbles [39].

A schematic illustration of themulti-componentmodel is shown
in Fig. 1. A color code namely ‘‘red’’ and ‘‘blue’’ is used to identify
the fluids. The red and the blue fluids are immiscible and are
separated from each other by a diffused interface. The unit normal
and tangential vectors at the diffused interface are represented by
n and t, respectively. For each phase a particle distribution function
is defined and are denoted by f Ri and f Bi , where superscripts ‘‘R’’ and
‘‘B’’ denote the red and blue fluids, respectively. The density of each
phase is determined as

ρR (x, t) =

∑
i

f Ri (x, t) , (17)

ρB (x, t) =

∑
i

f Bi (x, t) . (18)

In the present multicomponent model, instead of a discontinuous
jump, the fluid properties undergo a continuous variation across
the fluid–fluid interface. To achieve this, a color function C based
on the density of each fluid is defined, expressed as

C(x, t) =
ρR(x, t) − ρB(x, t)
ρR(x, t) + ρB(x, t)

. (19)

The value of C shows an insignificant variation in the pure phase
and undergoes a smooth transition across the fluid–fluid interface
thereby creating a diffused region separating the two immiscible
fluids. The unit normal vector n to this diffused interface can be
obtained using the gradient of the color function and is defined as

n = −
∇C
|∇C |

. (20)

This unit normal vector can be further used to determine the local
curvature κ of the diffused interface, expressed as

κ =
1
Rc

= −∇S · n, (21)

where Rc is the local radius of curvature of the diffused interface,
as shown in Fig. 1, and ∇S is the surface gradient operator, given as

∇S = (I − nn) · ∇. (22)

The hydrodynamics is modeled as follows. The red and blue
fluids undergo collision operation (Eq. (15)) as a mixed fluid in
which the particle distribution function f Ti (x, t) is given as

f Ti (x, t) = f Ri (x, t) + f Bi (x, t), (23)

with the relaxation time as

τ (x, t) =
τRρR(x, t) + τBρB(x, t)

ρR(x, t) + ρB(x, t)
. (24)

Here τR and τB are the dimensionless relaxation times of the red
and blue fluids, respectively. The source term incorporating the
pressure force is augmented in the collision operator and is given
as [40]

ΦI = wi

(
1 −

1
2τ

)[
ei − u
c2s

+
(ei · u)

c4s
ei

]
· FI , (25)

where FI is defined as [36]

FI = −
1

2Rc
γ∇C . (26)
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Here u is the corrected velocity used in the calculation of f eqi and is
given as

u =
1
ρ

[∑
i

fiei +
1
2
FI

]
. (27)

The computation of force term FI using Eq. (26) significantly re-
duces the spurious velocities at the fluid–fluid interface [31,36].

To sharpen the interface and further reduce spurious velocities,
a recoloring algorithmproposed by Latva-Kokko and Rothman [41]
is incorporated. In this method, the post collision distributions of
the red and blue fluids are computed as

f ‡
i,R =

ρR

ρR + ρB
fi + wiβ

ρRρB

ρR + ρB
ei · n, (28)

f ‡
i,B =

ρB

ρR + ρB
fi − wiβ

ρRρB

ρR + ρB
ei · n, (29)

where β is the anti-diffusion parameter and its value is taken
as 0.7 [42]. After the color separation step, each particle distri-
bution function undergoes streaming as given by Eq. (16). This
multi-component model is only valid for fluids having similar
density [36].

Further, we present a modeling framework to couple hydrody-
namics with electrostatics in leaky dielectric fluids. When an elec-
tric field is applied to the multi-component fluid system, the tran-
sition of electrical properties leads to an electric stress (Maxwell
stress) at the diffused interface. To account for the variation of
electrical properties at the fluid–fluid interface, the local dielectric
permittivity, ε, and electrical conductivity, σ , can be expressed as

ε(x, t) =
εRρR(x, t) + εBρB(x, t)

ρR(x, t) + ρB(x, t)
, (30)

σ (x, t) =
σRρR(x, t) + σBρB(x, t)

ρR(x, t) + ρB(x, t)
, (31)

where εR (εB) and σR (σB) are dielectric permittivity and electric
conductivity of the red (blue) fluid, respectively. The electric stress
is modeled by incorporating a body force due to electric field, FE ,
in the collision step. The body force FE is given as [32]

FE = ∇ · TE
= ρf E −

1
2
E2

∇ε. (32)

This body force is incorporated through a source term using the
formulation of Guo et al. [40] and is expressed as

ΦE = wi

(
1 −

1
2τ

)[
ei − u
c2s

+
(ei · u)

c4s
ei

]
· FE . (33)

where the corrected velocity u is now calculated as

u =
1
ρ

[∑
i

fiei +
1
2

(FI + FE)

]
. (34)

The inclusion of ΦE with ΦI results in the coupling of multi-
component hydrodynamics with dynamics of leaky dielectric flu-
ids.

2.3. Numerical method for leaky dielectric model

To incorporate ΦE in the collision operation, it is first necessary
to compute electric potential (U) in both the fluids. In electrostat-
ics, Eq. (5) in terms of electric potential can be written as [34]

∇ · (σ∇U) = 0. (35)

As the computational domain, shown in Fig. 1, is discretized on
a uniform Cartesian grid, Eq. (35) can be solved by any suitable
numerical method to obtain the distribution of U . In this study, the
lattice Boltzmann equation proposed by He and Li [29] and finite-
difference method (FDM) have been used separately to determine

the quasi-steady distribution of electric potential (Eq. (35)). The
computational efficiency of both the numerical methods is com-
pared and discussed in Section 3.

In the framework of lattice Boltzmann method, an additional
potential distribution function hi can be defined that evolves ac-
cording to

hi(x + eiδt, t + δt) − hi(x, t) = −
hi(x, t) − heq

i (x, t)
τh

, (36)

where

heq
i (x, t) = wiU(x, t), i = 0, 1, 2...N. (37)

Here, heq
i is the local equilibrium potential distribution function, U

is the macroscopic electric potential, wi is the weight function and
ei is the microscopic velocity. In Eq. (36), τh is the dimensionless
electric relaxation time defined as

τh = 3σ (x, t) + 0.5. (38)

The velocity vectors and the weight functions for the individual
directions are the same as given in Eqs. (10)–(13).

Themacroscopic electric potentialU can be obtained by zeroth-
order moment of hi as

U(x, t) =

∑
i

hi(x, t). (39)

As shown in Appendix A, on applying the Chapman–Enskog expan-
sion, Eq. (36) can be shown to reduce to
∂U
∂t

− ∇ · (σ∇U) = 0. (40)

Eq. (40) is equivalent to Eq. (35) under the steady state limit
(i.e. ∂U/∂t = 0). Thus, in this work we have evaluated this method
of solving Eq. (35) using an additional distribution function hi.

When using the finite-differencing scheme, the gradients of
electrical conductivity and electric potential in Eq. (35) are ap-
proximated by using the second-order central differencing scheme
at the interior nodes and second-order forward or backward dif-
ferencing scheme at the boundary nodes of the computational
domain. The obtained discretized equation is then solved by using
point Gauss–Seidel or alternate direction implicit (ADI) scheme to
compute the quasi-steady distribution of electric potential at each
time instant.

2.4. Algorithm

The steps involved in the implementation of the algorithm
developed for coupling the multi-component lattice Boltzmann
method and the leaky dielectric model is described in the flow
chart shown in Fig. 2. The D2Q9/D3Q19model of lattice Boltzmann
method, as shown in Fig. 1, is adopted to perform simulations.
Firstly, the initial and boundary conditions of density, velocity and
electric potential are specified. Next, using an iterative procedure
a time invariant quasi-steady distribution of electric potential is
computed at each time instant. The electric potential U is consid-
ered to have reached a steady-state when⏐⏐Un

− Un−1
⏐⏐

|Un|
< δU , (41)

where δU = 10−6 is the tolerance and n represents the nth
iteration. Subsequently, ρf and electric field distribution (E =

−∇U) [34] in the computational domain are determined. Finally,
the source term due to electric field ΦE is computed at each lattice
and is incorporated in collision step of the velocity distribution
function. These steps are repeated to simulate EHD of leaky dielec-
tric fluids at each time instant.
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Fig. 2. Flow chart for coupling lattice Boltzmann method and leaky dielectric
model.

3. Results and discussion

Firstly, a comparative analysis was carried out to calculate
the number of iterations required for computing a time invari-
ant electric potential using the lattice Boltzmann method [29],
point Gauss–Seidel method and alternate direction implicit (ADI)
method. As a model problem, a droplet suspended in another
immiscible fluid was considered with an electric field acting on
both the fluids along the horizontal direction. A schematic of the
computational domain is shown in Fig. 3. The size of the computa-
tional domain is taken as 20a× 20a, where a= 20∆x is the droplet
radius. The left boundary of the domain is considered at higher
potential and the right boundary is grounded. A linearly varying
electric potential is applied along the top and the bottom bound-
aries of the domain. The subscripts B and Rdenote the inner and the
outer fluids, respectively. The conductivity and permittivity ratios
were taken as σB/σR = 2 and εB/εR = 0.5, respectively. The LBM
parameters in Table 1were determined by using the scaling factors
mentioned in Table B.1 (Appendix B).

Table 2 shows the comparison of the number of iterations
taken by the lattice Boltzmannmethod, point Gauss–Seidel and the
alternate direction implicit (ADI)method to obtain a time invariant

Fig. 3. Illustration of the computational domain for comparing the computational
efficiency of the numerical methods for solving Eq. (35). A droplet is suspended in
another immiscible fluid at the center of the computational domain. Electric field is
acting along the horizontal direction. A linearly varying electric potential is applied
along the top and the bottom boundaries. The subscripts B and R denote the inner
and the outer fluids, respectively.

Table 1
LBM values corresponding to the physical parameters used to obtain a steady
solution.
Parameter LBM values

Density of red fluid 1.0
Density of blue fluid 1.0
Kinematic viscosity of red fluid 1.0
Kinematic viscosity of blue fluid 1.0
Interfacial tension 0.01
Electrical conductivity of red fluid 0.10
Electrical conductivity of blue fluid 0.20
Dielectric permittivity of red fluid 0.01
Dielectric permittivity of blue fluid 0.005

Table 2
Comparative analysis of the number of iterations and computation time taken by
the numerical techniques to compute Eq. (35). The number of iterations have been
rounded off to two significant digits.
Numerical method Lattice Boltzmann method Point Gauss–Seidel ADI

Iterations 280000 83000 27000
Computation time (s) 9962.31 400.80 335.72

electric potential distribution in the domain. The slow rate of
convergence of the lattice Boltzmann method to attain a steady
solution is in consistence with the observations of Patil et al. [43].
Because it required the least number of iterations and computation
time, the ADI scheme was used to compute the distribution of the
electric potential in the case studies presented hereafter. Further
improvements in achieving faster convergence are possible by
using numerical schemes such as conjugate gradient, multi-grid
method etc.

Next, three different scenarios have been analyzed to validate
our model. In the first case study, simulations were performed for
a droplet suspended in another immiscible fluid in the presence
of an electric field. The flow patterns induced in the droplet were
qualitatively validated with previous numerical and experimental
studies. Further, the deformations obtained by individually varying
the electric field and the interfacial tension were compared with
analytical results. In the second case study, the flow dynamics
of a pair of circular droplets initially separated from each other
in the presence of an electric field was compared with earlier
studies. Lastly, the dynamics of a droplet under the combined
effect of electric field and shear flow was analyzed. In all the case
studies, the droplet radiuswas taken as 20∆x. The parameters used
for carrying out simulations were selected in a manner that the
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Fig. 4. Schematic of the computational domain for simulating the effect of electric
field on a droplet. The droplet is suspended in another immiscible fluid at the center
of the computational domain. The density of the droplet and the outer fluid is
considered to be equal. No slip hydrodynamic boundary condition is applied along
the domain boundaries. The left boundary of the domain is at higher potential and
the right boundary is grounded. A linearly varying potential is applied along the top
and the bottom walls of the domain. The subscripts B and R denote the inner and
the outer fluids, respectively.

charge relaxation time was significantly smaller than the viscous
relaxation time, i.e., tc ≪ tv where tc = εR/σR and tv = µR/εRE2.

3.1. Droplet deformation

In the first scenario simulated, the deformation induced in a
droplet in the presence of an electric field is presented and the
results are compared with an analytical solution [15]. Fig. 4 il-
lustrates the schematic of the problem solved. A droplet of initial
radius a is immersed in another immiscible fluid and an electric
field E is acting on the fluids along the horizontal direction. Under
the influence of electric field, the charge accumulates at the drop
interface and induces an electric stress along both the normal and
tangential directions to the fluid–fluid interface. Depending upon
the distribution of this free charge, the tangential stress induces
recirculatory fluid flow thereby generating hydrodynamic stress
at the drop interface. This interaction between the electric and
hydrodynamic stress leads to the deformation of the droplet into
either a prolate (along the direction of electric field) or an oblate
(normal to the direction of electric field) shape [8].

The deformation, D, induced in the droplet can be quantified as

D =
L − B
L + B

, (42)

where L and B are the end-to-end lengths of the droplet measured
along and in a direction transverse to the electric field as shown in
Fig. 4, respectively. In Stokes flow limit, the droplet deformation at
steady-state can be expressed as

D =
dεBE2a

3S(1 + R)2γ
, (43)

where

d = R2
+ R + 1 − 3S. (44)

Here, γ is the interfacial tension, R = σB/σR is the conductivity
ratio and S = εB/εR is the permittivity ratio. It should be noted
that Eq. (43) is only applicable for D ≪ 1 [15]. In Eq. (43), d is a
discriminating function which dictates the deformation shape of
the droplet. For d > 0 , the droplet deforms into a prolate shape
while an oblate shape is obtained for d< 0.Moreover, the direction
of flow field induced in the two fluids is determined from the

Table 3
Droplet radius and grid spacing used in grid independence study.
Description Droplet radius Grid resolution

Mesh 1 (coarse grid) 10∆x 200 × 200
Mesh 2 (regular grid) 20∆x 400 × 400
Mesh 3 (fine grid) 30∆x 600 × 600

relativemagnitude of R and S [6,8,15]. For R< S the velocity vectors
in the first quadrant are oriented in the anti-clockwise direction
(from the poles to the equator), whereas for R > S the velocity
vectors are along the clockwise direction (from the equator to the
poles).

A computational domain of size 20a × 20a was considered
to simulate the dynamics of the droplet under the influence of
electric field. To apply an electric field, the left boundary of the
domain was considered at higher potential and the right boundary
was grounded. A linearly varying electric potential was applied
along the top and the bottom boundaries of the domain. No slip
hydrodynamic boundary condition was imposed on all the domain
boundaries by implementing the half-way bounce back scheme.
The density of the inner and the outer fluids was considered to
be equal. Flow parameters were selected to ensure that Re = 0.1
so as to compare simulation results with the analytical solution
(Eq. (43)) [15].

The results obtained for the droplet deformation and the fluid
motion for three different cases (i) R > S, d > 0, (ii) R < S, d > 0
and (iii) R < S, d < 0 are shown in Fig. 5(a)–(c), respectively.
Fig. 5(a) shows that the velocity vectors in the first quadrant are
in the clockwise direction and the droplet deforms into a prolate
shape. Fig. 5(b) and (c) show that the velocity vectors in the first
quadrant are along the anti-clockwise direction and the droplet
deforms into a prolate and an oblate shape, respectively. The flow
patterns obtained from our simulations are in agreement with
earlier analytical and experimental studies [8,44,45].

Simulations were also carried out to quantify the deformations
induced in the droplet by varying (a) the electric field and (b) the
interfacial tension. To ensure themesh independence of numerical
results, a grid sensitivity study was performed by comparing the
results obtainedwith three differentmesh sizes. The description of
the grid spacing and droplet radius is given in Table 3. A compari-
son of the deformations induced in the droplet under the influence
of electric field for all the mesh resolutions is shown in Fig. 6.
The electric field E has been normalized by the maximum value
of electric field E0 = Umax/H . Here Umax is the maximum electric
potential applied andH is the distance between the two electrodes
for each grid. As the results obtained using the mesh of 400 × 400
show good agreement with the fine grid, hence it was adopted for
conducting further simulations.

Fig. 7(a) and (b) show a comparison of the droplet deformation
D obtained from our formulated model and the analytical solution
(Eq. (43)) for different values of electric field and interfacial ten-
sion, respectively. The solid lines in Fig. 7 denote the theoretical
deformations whereas the symbols denote the results from the
model formulated in this work. The deformations induced in the
droplet calculated from our model are in agreement with the an-
alytical results [46]. As the analytical expression [46] is applicable
only for small deformations (D ≪ 1), the results predicted from
the analytical solution deviate slightly from those obtained from
our model as D approaches 0.1.

Further, simulationswere performed to validate the time evolu-
tion of deformation induced in the droplet due to an electric field.
The gradual evolution of the droplet deformation with time was
examined in a confined geometry and the results obtained were
comparedwith thework of Santra et al. [47]. The confinement ratio
χ = 2a/H was considered as 0.2 and the electrical conductivity
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Fig. 5. Droplet deformation and circulatory flow induced in the fluid domain in the presence of an electric field. (a) For R> S, d> 0, droplet deforms into a prolate shape and
velocity vectors in the first quadrant move along the clockwise direction. (b) Droplet deforms into a prolate shape for R < S, d > 0 and velocity vectors in the first quadrant
move along the anti-clockwise direction. (c) For R < S, d < 0, flow field in the first quadrant is induced along the anti-clockwise direction and the droplet deforms into an
oblate shape.

Fig. 7. Comparative analysis of the droplet deformation D between the analytical solution and the model formulated in the present work by altering (a) electric field, |E|

and (b) interfacial tension, γ . The solid line in the figure represents the analytical results and symbols denote the work from our developed model.

Fig. 6. Comparative analysis of the deformations induced in the droplet under the
influence of electric field for different mesh resolutions. The electric field has been
normalized by the maximum value of electric field Eo = Umax/H occurring in the
respective mesh resolutions. The description of the mesh resolution is shown in
Table 3.

and permittivity ratio were taken as 2 and 0.5, respectively. The
size of the computational domain was taken as 10a × 20a. The

time evolution of the droplet deformation were analyzed for two
different electric capillary number CaE = εRE2a/γ = 0.08 and
0.14 at Re = 0.01, respectively. Fig. 8 shows a comparison of
the evolution of the droplet deformation obtained from our model
with the numerical results of Santra et al. [47]. The solid lines
in Fig. 8 denote the results from our multi-component and the
symbols represent the results of Santra et al. Clearly, the results
obtained from our multi-component model are in good agreement
with the results of [47].

3.2. Droplet pair interaction

In the second case study, the behavior of a pair of circular
droplets suspended in another immiscible fluid under the influ-
ence of an electric fieldwas analyzed. This problemhas been previ-
ously analyzed byBaygents et al. [6] for spherical droplets using the
boundary integralmethod in the Stokes flow limit and a qualitative
comparison is presented with our two-dimensional simulations.
As shown in Fig. 9, a pair of droplets each with an initial radius
a were separated by a center-to-center distance of h = 5.0a. A
uniform electric field E, far from the droplets, was acting parallel
to the line passing through the droplet centers. It was reported
that the dynamics of the droplet pair, initially separated at suffi-
ciently large distance from each other, is affected by two different
mechanisms acting simultaneously on them. First, in the presence
of an electric field, free charge accumulates on the fluid interface
and the droplets behave like a dipole. This electric interaction
between the droplet pair is always attractive in nature and leads
to the coalescence of droplets. Secondly, the flow induced pushes
the droplets either towards or away from each other depending
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Fig. 8. Comparison of the evolution of droplet deformation in a confined geometry
due to an electric field. The confinement ratio is taken as χ = 0.2, the conductivity
and permittivity ratios are taken as 2 and 0.5, respectively. Here T ∗

= t/tv is the
non-dimensional time. The symbols indicate the results of Santra et al. [47] and the
lines represent the results obtained from our developed model.

Fig. 9. Schematic of the computational domain for simulating the effect of an
electric field on a pair of droplets. The droplets are separated by a center-to-center
distance of 5 times the droplet radius. The density and viscosity of both the droplets
and the outer fluid are considered same. No slip boundary condition is applied at the
domain boundaries. The left boundary of the domain is considered to be at higher
potential and the right boundary is grounded. A linearly varying electric potential
is applied at the top and the bottom walls of the domain. The subscripts B and R
denote the droplets and the outer fluid, respectively.

upon the orientation of recirculations produced. Baygents et al. [6]
inferred that although the electrostatic interactions always act on
the droplets, the effective motion of the droplet pair is governed
by the direction of flow field induced, which further depends upon
the sign of (R − S), where R = σB/σR is the conductivity ratio and
S = εB/εR is the permittivity ratio. The droplet pair was reported
to move towards each other for R < S whereas, the droplet pair
moves away from each other for R > S.

To capture the attractive and the repulsive nature of this in-
teraction, we performed simulations for both conditions corre-
sponding to R < S and R > S. The domain size was taken as
35a × 35a (where a is the droplet radius) and was chosen in a
manner such that the electric field far from the droplets becomes
uniform. To impose an electric field, the left boundary of the
domain was considered at higher potential and the right boundary
was grounded. A linearly varying electric potential was imposed
along the top and the bottom boundaries of the domain. Also,
no slip hydrodynamic boundary condition was enforced along all
the domain boundaries by implementing half-way bounce back
scheme. The flow parameters used for carrying out simulations
were selected such that CaE = εRE2a/γ = 1.5 and the fluid flow
lies in Stokes flow limit (Re ≪ 1).

Fig. 10. Droplet pair interaction and the streamline patterns induced at different
time T ∗

= t/tv for R = 6 and S = 8 at CaE = 1.5.

Fig. 11. Droplet pair interaction and the streamline patterns induced at different
non-dimensional time T ∗

= t/tv for R = 1.04 and S = 0.2 at CaE = 1.5.

The results of droplet pair interaction for R < S and R > S
obtained fromour simulations are shown in Figs. 10 and11, respec-
tively. The deformeddroplet shape and the direction of streamlines
induced in the domain are shown for different time instants using
a non-dimensional time, T ∗

= t/tv . For R < S, the droplets deform
along the direction of electric field and the flow inside the droplets
moves fromequator to poles. Such evolution of flowpattern clearly
suggests that the droplets exhibit movement towards each other.
For R > S, although the droplets stretch along the direction of
electric field, the flow evolves from poles to equator with time.
These flow patterns result in increasing the separation between
the two droplets and confirms the earlier observations where
similar behavior for R > S has been reported [6]. Even though our
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Fig. 12. Schematic of the computational domain for simulating the cumulative
effect of electric field and shear force on droplet deformation. The density and
viscosity of the droplet and the outer fluid are considered to be equal. The top and
bottomboundaries of the domainmovewith velocity u= u0(y−H/2)/H . A constant
electric potential is applied at the top boundary of the domain and the bottom
boundary is grounded. The left and right boundaries of the domain are electrically
insulated. The subscripts B and R denote the inner and the outer fluids, respectively.

simulations are two-dimensional, the results are consistent with
the results of Baygents et al. [6].

3.3. Droplet behavior in a shear flow and electric field

The applicability of the developed numerical model is further
highlighted by simulating the effect of electric field and exter-
nally imposed shear stress acting simultaneously on a droplet.
This model problem was previously solved by using the immersed
boundary and immersed interface method (IBIIM) at Ohnesorge
number Oh = µ/

√
(ργ a) = 1 and electric capillary number CaE =

εRE2a/γ = 1 [22]. We present validation of our model by compar-
ing the deformed droplet shapes obtained from our simulations
with the results of Ref. [22].

A schematic of the computational domain is shown in Fig. 12
with a droplet suspended in another immiscible fluid. The outer
fluid is subjected to a shear flow by applying a velocity u= (u0(y−

H/2)/H, 0) at the top and the bottom plates, respectively. The
top boundary of the domain is considered at higher potential,
the bottom boundary is grounded and the vertical boundaries are
electrically insulated (i.e. ∂U/∂x = 0). The ratio of the droplet
radius to the domain size 2a/H is 1/8. The hydrodynamic bound-
ary conditions were implemented by applying periodic boundary
conditions along the left and right boundaries of the domain. For
the moving boundaries, half-way bounce back scheme given as

fi,k(x, t + δt) = fi′,k(x, t) + 2
ρkwi

c2s
u · ei, (45)

was implemented on the top and bottom boundaries of the do-
main. Here i′ is the direction opposite to i and k refers to the
‘‘red’’ or ‘‘blue’’ fluid. The flow parameters used for carrying out
the simulations were selected such that Oh = 1, CaE = 1 and
Re = O(1).

The presence of the inner fluid droplet disturbs the motion
of the outer fluid. This disturbance induces stress both along the
tangential and the normal direction at the drop interface. The
normal stress leads to a pressure difference across the interface
thereby deforming the droplet. As stated in Section 3.1, applying an
electric field on fluids induces an electric stress at the fluid–fluid
interface. Thus, the deformation of droplet under the combined
effect of electric field and shear flow is governed by the cumulative
effect of electric and shear stresses acting at the drop interface.

Fig. 13 shows the comparison of the droplet deformation due
to shear flow with (solid line) and without (dotted line) an applied

electric field at a non-dimensional time T ∗
= t/(ρa3/γ )1/2 = 10.

The parameters used for comparison were (i) R =1.75, S = 3.5,
(ii) R = 3.25, S = 3.5 and (iii) R = 4.75, S = 3.5 as shown in
Fig. 13(a)–(c), respectively. Here,R=σB/σR is the conductivity ratio
and S = εB/εR is the permittivity ratio. As illustrated by the dotted
lines, the droplet elongates due to shear flow into an ellipsoidal
shape and inclines at an angle to the horizontal flow direction. As
stated in Section 3.1, the deformation of a droplet in the presence
of an electric field can be determined by discriminating function,
d. The value of R = 1.75 and S = 3.5 results in d < 0 (Eq. (44)),
thus under the combined effect of electric field and shear flow
the droplet tends to align itself towards the horizontal direction.
Similarly, in Fig. 13(b) and (c), the value of R and S results in d > 0
(Eq. (44)) thereby leading to a higher angular separation between
the droplet major axis and the shear direction. Fig. 14(a)–(c) show
the comparison of these results, corresponding to the three cases
shown in Fig. 13 at CaE = 1, obtained from our simulations with
the results of Hu et al. [22]. The solid lines represent the results ob-
tained from thepresentmethod and the symbols denote the results
from immersed boundary and immersed interface method [22].
Clearly, the results obtained from our simulations are in very good
agreement with published results.

Furthermore, the streamline patterns corresponding to the re-
sults of Fig. 14 were analyzed and are shown in Fig. 15. For R =

1.75 and S = 3.5, the drop interface is tangential to the local
streamlines and separates the recirculation zone inside the droplet
from the outer fluid. Also, the streamline patterns do not cross
the interface thereby indicating that a steady deformed shape has
been reached [48]. Similarly, streamline patterns for R = 3.25 and
S = 3.5 also indicate that an equilibrium shape has been attained.
For R = 4.75 and S = 3.5, it can be seen from Fig. 15(c) that
streamlines pass through the fluid interface, suggesting that the
equilibrium shape has not been attained at T ∗

= 10 and a longer
computation time is needed for the droplet to reach a steady state.
These results are also in qualitative agreementwithMählmann and
Papageorgiou [48].

The results from the above case study highlight the effect of an
externally applied electric field on a droplet placed in a Couette
flow configuration. Since the behavior of a single isolated spherical
droplet can provide a fundamental understanding in the synthe-
sis of emulsion in micro-confined flows, the developed method
has been applied to examine the effect of an electric field on a
spherical droplet placed in a confined (H/2a < 4) Couette flow
configuration. A schematic of the computational domain depicting
a spherical droplet of radius a suspended in another immiscible
fluid is shown in Fig. 16. The top and bottom walls of the domain
are separated from each other by a distance H = 4.0a and
translate along the x-direction with velocity u = (u, 0, 0) and
u = (−u, 0, 0), respectively. The top and bottom walls of the
domain as prescribed fixed with unequal electric potential.

The top wall of the domain is considered at higher potential
and the bottom wall is grounded. The hydrodynamic boundary
conditions were implemented by applying half-way bounce back
scheme for the top and bottom walls of the domain, as given by
Eq. (45). Periodic boundary conditions were applied along the flow
and traverse boundaries of the domain.

As stated above, the presence of a droplet in Couette flow con-
figuration induces stress both along the normal and the tangential
direction to the droplet interface. This leads to the deformation of
the droplet into an ellipsoidal shape with its major axis inclined at
an angle with the flow direction or sometimes even breakup of the
droplet into smaller droplets. For a fixed viscosity ratio λ = µB/µR
and confinement ratioχ = 2a/H the droplet behavior in the Stokes
flow limit can be characterized by the Capillary number, Ca =

ζaµR/(γ ), where ζ = 2u/H . For Ca < Cacrit (critical Capillary
number), the droplet deforms and attains a steady shape while for
Ca ≥ Cacrit the droplet breaks up into smaller droplets [49–51].
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Fig. 13. Comparison of the deformations induced in a droplet due to shear flow with (solid line) and without (dashed line) electric field at a non-dimensional time
T ∗

= t/(ρa3/γ )1/2 = 10. (a) The angular separation between the major axis of the droplet and the direction of shear flow decreases in the presence of electric field as
compared to without electric field. (b) and (c) depict that the angular separation between the major axis of the droplet and the direction of shear flow increases in the
presence of electric field than in the absence of electric field.

Fig. 14. Comparison of the droplet shape obtained from the model formulated in the present work and immersed boundary and immersed interface method. The solid lines
represent the work from the present study and the symbols denote the results of Hu et al. [22].

Fig. 15. Streamline patterns of the drop suspended in shear flow at Oh = 1 and CaE = 1.

The cumulative effect of the electric and viscous stresses were
analyzed by examining the dynamics of the droplet for Ca = 0.4
at CaE = 0 and CaE = 0.2. The droplet and the surrounding
fluids were considered to be of equal viscosity. The size of the
computational domain was taken as 16a ×4a ×4a. The electric
conductivity and dielectric permittivity ratio of the fluids were
taken as R = 10 and S = 2, respectively. Fig. 17 shows the variation
in droplet profile with time for Ca = 0.4 and CaE = 0. The viscous
shear stresses of the external flow leads to the elongation of the
droplet (ζ t = 5 and 15). At ζ t = 20, a waist is formed at the center
of the droplet and the further elongation of the droplet results in
the formation of two bulbous ends connected from each other by

a neck (ζ t = 26). The neck continues to thin (ζ t = 29), eventually
leading to the binary breakup of the droplet (ζ t = 30 and ζ t = 33).
The continuous elongation of the droplet eventually leading to the
binary breakup of the droplet is in agreement with the work of
Janssen et al. [50] and also validates quantitatively with the work
of Liu et al. [52].

Applying an electric field to the droplet leads to a significant
increase in the deformation of the droplet. The evolution of the
droplet profile with time is shown in Fig. 18. The interplay of
the electric and viscous stresses results in a sigmoidal shape of
the droplet with the droplet ends pointing towards the electrode
(ζ t = 5 and 7). Further elongation of the droplet leads to the
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Fig. 16. Illustration of the computational domain for simulating the droplet
breakup in a confined Couette flow configuration under the influence of an electric
field. A droplet of radius a is placed in the center of the computational domain. The
top and bottom walls are separated from each other by a distance H = 4.0a. The
density and viscosity of both the droplet and the outer fluid are considered same.
Movingwall hydrodynamic boundary condition is applied along the top and bottom
walls of domain. Periodic boundary condition is applied along the flow and traverse
direction of the domain. The top wall is considered to be at the higher potential and
the bottom wall is grounded. The subscripts B and R denote the droplet and the
outer fluid, respectively.

Fig. 17. Shape evolution of the droplet in a confined Couette flow configuration for
Ca = 0.4, CaE = 0 and λ = 1. The conductivity and permittivity ratio of the fluids
are R = 10 and S = 2, respectively.

formation of rounded ends (ζ t = 15). The center portion of the
droplet continues to thin, eventually leading to the development
of pinching region near the droplet ends (ζ t = 20). Subsequently,
the bulbous ends split (ζ t = 22) and the remaining droplet retracts
under the action of interfacial force to from an ellipsoidal droplet
in the center (ζ t = 26). As compared to CaE = 0, for CaE = 0.2 the
droplet deformation increases significantly and the droplet breaks
up into three smaller droplets (ternary break up). Thus, for a set of
flow parameters, it can be inferred that the inclusion of an electric
field can promote the breakup of a droplet in confined flow system.
Further detailed analysis of the droplet dynamics in a confined flow
and under the influence of an electric field will be presented in a
future work.

Fig. 18. Shape evolution of the droplet in a confined Couette flow configuration for
Ca = 0.4, CaE = 0.2 and λ = 1. The conductivity and permittivity ratio of the fluids
are R = 10 and S = 2, respectively.

The validation of the above case studies show that the devel-
oped approach of coupling the low spurious current multicompo-
nent model of the lattice Boltzmannmethod with the leaky dielec-
tric model can accurately predict the physics of leaky dielectric
fluids under the influence of an electric field. Although models
have been attempted to simulate the electrohydrodynamics of
multicomponent fluids in the framework of the lattice Boltzmann
method, the key differences between our work and these earlier
studies has been in the choice of the hydrodynamicsmodel (low vs.
high spurious velocity at the interface) [27,30] and computational
efficiency of themethodology to simulate the flow physics of leaky
dielectric fluids. Further, the formulated methodology is applica-
ble for both steady and time evolving electrohydrodynamic flows
and can be used in modeling a variety of electric field actuated
multiphase flows such as droplet manipulation in an electrified
microchannel [53,54], production of droplets under the influence
of an electric field in a microchannel [55,56] and droplet sorting
using dielectrophoresis in a microfluidic system [57].

4. Conclusions

In this work, the capability of lattice Boltzmann model in sim-
ulating flows involving interfacial dynamics has been utilized to
compute electrohydrodynamic flows in leaky dielectric fluids. The
developed framework involves coupling of the leaky dielectric
model with a low spurious current multi-component lattice Boltz-
mann model by calculation of the Maxwell stresses and their
inclusion in the hydrodynamics equation. The developed model
involves computation of a time invariant steady electric potential
distribution in the flow domain using a time marching lattice
Boltzmann equation or through a finite-difference formulation. As
compared to point Gauss–Seidel and alternate direction implicit
methods, the rate of convergence of the lattice Boltzmann equation
to attain a steady electric potential distribution was observed to
be slow. Using alternate direction implicit scheme, the steady
electric potential distribution was computed for steady and time
evolving electrohydrodynamic flows. The developed model was
validatedwith three different case studies. In the first flow scenario
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modeled, simulationswere carried out to compute the steady state
deformation of a droplet suspended in another immiscible fluid
under the action of an external electric field. Under the small defor-
mation limit, the deformation induced in the droplet by varying the
electric field and interfacial tension were in excellent agreement
with analytical results. Further, the flow fields induced in the flow
domain were also in good agreement with the previous analytical
and experimental results. In the second case study, the interaction
of a pair of circular droplets suspended in another immiscible fluid
in the presence of an external electric field was analyzed. It was
shown that the droplet pair either moved towards or away from
each other due to competing effect of induced flow and electro-
static interaction (attractive or repulsive) at the section of interface
closest to each other. The elongation induced in the droplet pair
and the evolution of flowpatterns in the flowdomainwere in qual-
itative agreementwith an earlier study. Lastly, the combined effect
of external electric field and shear flow on a droplet suspended
in an outer fluid was simulated. The time evolution of the droplet
shape with and without electric field for a fixed permittivity ratio
and various conductivity ratios was analyzed. The results obtained
were in congruence with the previously reported numerical stud-
ies. The developed methodology was further extended to three-
dimensional flows to examine the behavior of a spherical droplet
under the influence of an electric field in confined flows. The
evolution of the droplet profile with time both in the presence and
absence of the electric fieldwas examined. The inclusion of electric
field in the confined flow configuration was observed to increase
the deformation of the droplet and promotes the breakup of the
droplet into smaller droplets. It is expected that the developed
model will be of benefit in modeling a variety of electric field
actuated multiphase flows in the near future.
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Appendix A

The derivation of the Ohm’s law from the lattice Boltzmann
equation proposed by He and Li [29] is as follows. Considering a
generalized case, DdQq model, where d, q are number of dimen-
sions and possible velocities, respectively, the evolution equation
of electric potential distribution function (hi) is

hi(x + eiδt, t + δt) − hi(x, t) =
−1
τh

(hi(x, t) − heq
i (x, t)), (A.1)

where τh is the electric relaxation time and heq
i is the local equilib-

rium electric potential distribution function. On expanding hi(x +

eiδt) using Taylor series expansion the evolution equation can be
written as

Dihi(x, t) +
δt
2!

D2
i hi(x, t) = −

1
τhδt

(hi(x, t) − heq
i (x, t)), (A.2)

where

Di =
∂

∂t
+ ei · ▽. (A.3)

By using the Chapman–Enskog [58] approximation in time and
space, we have

∂

∂t
= ϵ2 ∂

∂t2
, (A.4)

hi(x, t) = heq
i (x, t) + ϵh(1)

i (x, t) + ϵ2h(2)
i (x, t), (A.5)

Table B.1
Parameters conserved for unit conversion.
Physical quantity Value in SI units Value in LBM units

Droplet radius (R) 3 × 10−3 m 20.0
Kinematic viscosity (ν) 1 × 10−6 m2/s 1.0
Density (ρ) 1000 kg/m3 1.0
Electrical conductivity (σ ) 1 × 10−6 S/m 1.0

▽ = ϵ▽1, (A.6)

where ϵ is a small parameter. On substituting Eqs. (A.4)–(A.6) into
Eq. (A.2) and comparing the coefficients of ϵ and ϵ2, we have

(ei · ▽1)h
eq
i (x, t) =

−1
τhδt

ϵh(1)
i (x, t), (A.7)

and
∂heq

i (x, t)
∂t2

+ (ei · ▽1)h
(1)
i (x, t) +

δt
2
(ei · ▽1)2h

eq
i (x, t)

=
−1
τhδt

h(2)
i (x, t).

(A.8)

Using Eq. (A.7), Eq. (A.8) can be written as

∂heq
i (x, t)
∂t2

+ (ei · ▽1)[(−τhδt)(ei · ▽1)h
eq
i (x, t)]

+
δt
2
(ei · ▽1)2h

eq
i (x, t) =

−1
τhδt

h(2)
i (x, t).

(A.9)

Using heq
i = wiU (Eq. (37)) and taking summation on both sides of

Eq. (A.9), we have

∂U(x, t)
∂t2

− ∇1

(
e2δt
3

(τh − 0.5) (∇1 (U (x, t)))
)

= 0. (A.10)

In Eq. (A.10), e2δt(τh−0.5)/3 is considered as the non-dimensional
electrical conductivity. Thus, at steady state Eq. (A.10) reduces to
the macroscopic equation

∇ · (σ∇U) = 0. (A.11)

Appendix B

Dimensional analysis was done to relate the length, mass, time
and electric potential in physical units to LBM units. The physi-
cal constants used for the conversion are droplet radius, density,
kinematic viscosity and electrical conductivity. For DI water, the
parameters used for conversion of physical quantities into lattice
parameters are listed in Table B.1.

This gives the dimensional scaling factors as length CL = 1.5 ×

10−4 m, time CT = 2.25× 10−2 s, mass CM = 3.375× 10−9 kg and
voltage CV = 5 V.
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